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Abstract. Second-order characteristics are important in the description of various geometrical structures
occurring in foams, porous media, complex fluids, and phase separation processes. The classical second
order characteristics are pair correlation functions, which are well-known in the context of point fields
and mass distributions. This paper studies systematically these and further characteristics from a unified
standpoint, based on four so-called curvature measures, volume, surface area, integral of mean curvature
and Euler characteristic. Their statistical estimation is straightforward only in the case of the volume
measure, for which the pair correlation function is traditionally called the two-point correlation function.
For the other three measures a statistical method is described which yields smoothed surrogates for pair
correlation functions, namely variograms. Variograms lead to an enhanced understanding of the variability
of the geometry of two-phase structures and can help in finding suitable models. The use of the statistical
method is demonstrated for simulated samples related to Poisson-Voronoi tessellations, for experimental
3D images of Fontainebleau sandstone and for two samples of industrial foams.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 05.40.-a Fluctuation phenomena,
random processes, noise, and Brownian motion – 81.05.Rm Porous materials; granular materials

1 Introduction

Random geometrical two-phase micro-structures such as
porous media, foams, and phase separation processes re-
quire an adequate description both for characterization
and for calculations of their macroscopic physical proper-
ties. It is clear that volume fraction φ alone is not suffi-
cient for this purpose. Thus also specific surface s, spe-
cific integral of mean curvature and specific Euler number
have been considered. These four characteristics are re-
lated to the four so-called ‘intrinsic volumes’, which are
in 3D space: volume V , surface area S, integral of mean
curvature M and Euler characteristic χ.

In a systematic way, these volumes are connected with
‘random measures’. They are defined as follows. Consider
a very large random structure X , e.g., the set of all pores
of a sample of porous matter, and take the values of the
intrinsic volumes for X ∩ B for a deterministic test set
B. Of course, for different B different values are obtained,
which leads to four ‘measures’ in the sense of the math-
ematical discipline ‘measure theory’: measures are func-
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tions which assign real numbers to sets and which become
‘random measures’ for random structures, see [1, Chap. 7]
for a short introduction. As usual in many physical stud-
ies, we assume here that X is statistically homogeneous
and isotropic [2]. Under this condition the mean values of
the intrinsic volumes of X ∩B have the form ‘constant ×
volume of B’. The four constants are just volume fraction
φ, specific surface s, specific integral of mean curvature
and specific Euler characteristic. Because they belong to
moments of first order, they are often considered as first
order characteristics.

As known in statistics and physics, first order charac-
teristics are valuable descriptors, but often they are not
sufficient, as it is well known that quite different struc-
tures can have the same first order characteristics. There-
fore, it is necessary to refine the description by further
characteristics which incorporate variability and spatial
correlation. Today, there are three main approaches for
variability description of random geometric structures: (i)
the use of second-order characteristics, (ii) local porosity
distributions [3] and (iii) morphological functions [4–7].
The present paper follows the first and second approach
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and demonstrates the use of second-order characteristics,
namely pair correlation functions (PCFs) and related
characteristics of random measures.

The use of PCFs related to the volume measure and
to point fields has a long tradition in Statistical Physics
because of its close relation to material properties and
scattering experiments. For instance, intensity and angu-
lar distribution of light or X-rays passing through a mate-
rial depend on the fluctuations of dielectric constant and
on size and shapes of the regions over which these fluc-
tuations occur, what can be described in kinematic the-
ory by PCFs. Since the very first X-ray scattering exper-
iments [8], PCF became almost a synonym for structural
analysis in physics. Not only can physical properties such
as dielectric constant be obtained from scattering data
but also the size and shape of inhomogeneities; within the
Born approximation the scattered intensity of X-rays is
proportional to the Fourier transform of the PCF of the
scatterer. Because of the importance of structural analysis
in condensed matter physics, analytical expressions of reg-
ular bodies [9] as well as large/small wave-vector approx-
imations [10–13] and PCFs of stochastic models [14–16]
were derived.

Previously, this approach has been generalized to con-
sider (i) PCFs related also to intrinsic volumes different to
usual volume and (ii) characteristics of orders higher than
two. The most general exposition of this kind is probably
given in reference [17]. Because of the unsystematic evolu-
tion of the statistical theory, the notation for second-order
characteristics and intrinsic volumes has to date been un-
systematic. The present paper suggests a unified notation,
assigning to the characteristics indices equal to the dimen-
sions of the corresponding intrinsic volumes. Normalized
densities are denoted by g, while corresponding integrated
characteristics are denoted by k. Here traditions of point
process statistics and random set statistics are used. Fi-
nally, variograms are denoted by γ, following the tradi-
tions of geostatistics.

Second-order characteristics play three different roles:
(1) They serve in a statistical sense as descriptors of vari-
ability and spatial correlation, which give, for example,
information about the range of correlation in the struc-
ture or help to find suitable statistical models for simula-
tions. (2) PCFs and intrinsic volumes are used in physical
calculations of macroscopic properties starting from mi-
crostructure information [18,19]. (3) Finally second-order
characteristics serve in reconstruction simulations [20,21]
as reference functions, often combined with morphologi-
cal functions. Clearly, second-order characteristics are one
(very important) possibility to characterize spatial struc-
tures, but there are other methods, for example higher-
order characteristics or morphological functions. And they
represent some form of data compression which averages
out a lot of distributional information.

In the present paper the first case is considered,
and the data are voxelized, which result from simulation
and experimental tomographic images. We show how the
second-order characteristics can be determined statisti-
cally, in particular, for the cases of surface area S and

Euler characteristic χ. This is a difficult task because the
best characteristics, the PCFs g, have the character of
density functions, while voxel data are discrete. There-
fore this paper considers characteristics of an integrated
or smoothed nature, namely total values measured over
spheres. An example is the total surface area S(x; R) of
the structure X in the test sphere b(x, R) of radius R cen-
tered at point x – analysed as a function of x. For radii R
not too small, methods of discrete geometry can be used
to obtain precise values of these quantities, even for the
cases of the curvature characteristics M and χ. While the
local porosity approach [3] considers the one-dimensional
distributions of these values, we study here the spatial be-
haviour of such values for spheres with different centres x.
This leads to random fields of intrinsic volumes, i.e., fami-
lies of random variables indexed by points x in space. They
can be statistically analysed by methods of geostatistics,
see [22]. The close relationship between the corresponding
second order characteristics of the field, called ‘variogram’,
and the pair correlation function of the random measures
can be used for their statistical estimation.

The paper is organised as follows: Section 2 introduces
intrinsic volumes and curvature measures. While these
quantities are defined and investigated in the mathemati-
cal literature for very general geometrical structures, here
they are explained in Sections 2 and 3 only for ‘smooth’
structures. Section 3 introduces various statistical func-
tions including PCFs but also variograms, which are useful
for the description of second-order properties of all four in-
trinsic volumes. In order to support the understanding and
interpretation of empirical results, Section 4 discusses two
very simple stochastic models, which are reminiscent of
closed-cell and open-cell foams. While they do not satisfy
the smoothness assumptions of Section 2, their structure
is clear and calculation of their pair correlation functions
is easy. Section 5 then describes statistical methods, in
particular those based on variograms related to random
fields of sphere contents. This can be considered as a spa-
tial extension of the local porosity approach [3]. The final
Section 6 demonstrates the application of the statistical
methods to various data sets, including simulated models
and real experimentally imaged samples.

2 Intrinsic volumes and curvature measures

For a body Y in R3 with sufficiently smooth surface there
are four natural geometrical characteristics of different di-
mensionality, namely volume V (Y ), surface area S(Y ),
integral of mean curvature M(Y ), and integral of total
curvature K(Y );

S(Y ) =
∫

∂Y

ds ,

M(Y ) =
∫

∂Y

1
2

( 1
r1(s)

+
1

r1(s)

)
ds , (1)

K(Y ) =
∫

∂Y

1
r1(s) r2(s)

ds ,
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where ∂Y is the surface of Y and r1(s) and r2(s) are the
maximum and minimum curvature radii in s. M(Y ) is
also called the integral of Germain’s curvature and K(Y )
integral of Gaussian curvature; χ(Y ) = K(Y )/4π is called
Euler characteristic. In the mathematical literature more
general definitions are given, which are valid also in cases
of reduced smoothness properties [23,24].

Integral geometry [23,24] shows that these character-
istics and their counterparts in d-dimensional space play
a fundamental role. A famous example is Hadwiger’s the-
orem, saying that additive, motion-invariant, and contin-
uous functionals of convex sets are linear combinations
of these four characteristics. Up to constant factors these
characteristics are proportional to the Minkowski func-
tionals Wi(Y ):

W0(Y ) = V (Y ),

W1(Y ) =
1
3
S(Y ), (2)

W2(Y ) =
1
3
M(Y ),

W3(Y ) =
1
3
K(Y ) =

4π

3
χ(Y ).

Since the numbering of Minkowski functionals is a bit un-
natural, modern integral geometers use the intrinsic vol-
umes Vk(Y ) [24] which in R3 are;

V0(Y ) = χ(Y ),

V1(Y ) =
1
π

M(Y ), (3)

V2(Y ) =
1
2
S(Y ),

V3(Y ) = V (Y ).

Starting from intrinsic volumes, one can define curvature
measures. For a given (and then fixed) random structure
X the random curvature measures CX,i are defined for a
variable set B in R

3 as follows:

CX,i(B) = Vi(X ∩ B). (4)

Particular cases are the volume measure VX(B), surface
measure SX(B), and total curvature measure KX(B):

VX(B) = V (X ∩ B) = CX,3(B),

SX(B) = S(∂X ∩ B) = 2CX,2(B), (5)

KX(B) =
∫

∂X∩B

1
r1(s) r2(s)

ds = 4πCX,0(B).

For i = 0, 1 and 2 the measures are completely concen-
trated on the surface ∂X of X . For i = 0 and 1 the
curvature measures can have negative values, i. e. these
measures are ‘signed’ measures. For definitions of curva-
ture measures for more general structures see [23,24]. Note
that in the local porosity approach only the distribution
of quantities related to VX(B) is considered.

3 Intensities and pair correlation functions

The means of the random curvature measures are (non-
random) measures, which have a very simple form in the
case of statistical homogeneity:

〈CX,i(B)〉 = ciV (B), for i = 0, ..., 3, (6)

where V (B) is the usual volume of B. The ci depend of
course on X , but this dependence is depressed in the nota-
tion. The ci are called curvature intensities and are known
by more traditional names and symbols: c3 is the volume
fraction, frequently used symbols are φ and VV ; c2 = 1

2s is
the half specific surface s, frequently used symbols for the
latter are s and SV ; c1 is denoted by MV , and c0 is often
called specific connectivity number, specific Euler number
or density of Euler number and denoted by NV or χV .

The second order behaviour of homogeneous and iso-
tropic random measures is described by product densities,
pair correlation functions and so-called K functions. The
aim is to express means such as

〈CX,i(A)CX,j(B)〉 (7)

for two test sets A and B. A particular case is the variance
σ2

i = var(CX,i(B)) of CX,i(B) for a given set B. The
following formulas for such quantities are given for smooth
structures (see Ref. [1], Sect. 7.2). The first one is

var(CX,i(B)) = c2
i

∞∫

0

γB(r)dKi(r) − (ciV (B))2, (8)

where γB(r) is the isotropized set covariance of B [1,
p. 233], and Ki the K function of CX,i. The differential
dKi(r) can be replaced via

c2
i dKi(r) = 4πr2ρi(r) dr (9)

and
dKi(r) = 4πr2gi(r) dr. (10)

Here ρi(r) denotes the product density and gi(r) the pair
correlation function of CX,i. All gi(r) for i ≤ 2 satisfy
gi(0) = ∞ and gi(∞) = 1. The interpretation of ρi(r) and
Ki(r) is as follows: consider two infinitesimally small balls
b and b′ of volumes dV and dV ′ at distance r. Take the
mean mi(r) of the product of CX,i(b) and CX,i(b′). Then

mi(r) = ρi(r)dV dV ′. (11)

Further consider a point randomly chosen in X (i = 3) or
in ∂X (i = 0, 1, 2) and take it as centre of a ball b(r) of
radius r. Then ciKi(r) is the mean of CX,i(b(r)). Conse-
quently the variance formula (8) can be rewritten as

var(CX,i(B)) = c2
i

∞∫

0

4π r2 γB(r) [gi(r) − 1] dr, (12)

using the formula

4π

∞∫

0

γB(r)r2dr = (V (B))2 , (13)
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which is valid for arbitrary B. For a sphere of radius R it
is

γB(r) =
4
3
πR3

(
1 − 3r

4R
+

r3

16R3

)
(14)

for r < 2R, otherwise it vanishes. It can happen that
gi(r) = 1 for all r ≥ r0 for some r0. Then this r0 is called
range of correlation. If r0 is infinite, then the range of
correlation is that value r0 for which |gi(r)− 1| < ε for all
r ≥ r0. The term ‘range of correlation’ is also used in a
qualitative sense by saying that the range of correlation for
one structure and characteristic is larger than for another
if the speed of the convergence of gi(r) towards 1 is faster.

Some of these second order characteristics are well-
known in the physics literature and used in many ap-
plications. Clearly, ρ3(r) is the same as the covariance
C(r) (as in [1] and other references) or the two-point
probability function S2(r) as in [2]. Finally, second or-
der characteristics related to i = 0 appear in [25]. The
form of S2(r) is known for various models, see [1,2,26].
It is S2(0) = φ and S2(∞) = φ2. For Boolean models
[1,27], S2(r) is monotonously decreasing, while for sphere
packings it shows additional oscillations [2,26].

Furthermore, formulas for ρ2(r), which coincides with
the surface correlation function Fss(r), are given in [2,
Eq. (6.18) and p. 170], for Boolean models with spherical
grains. A Boolean model is a random set formed by the
set-theoretic union of fully penetrable grains; see [1] for a
precise definition. The corresponding Fss (r) has a pole at
r = 0, is monotonously decreasing and is equal to s2 =
S2

V for r larger than the largest sphere diameter; if the
diameters are constant equal to R, then at r = 2R there is
a small discontinuity. For Boolean models with spherical
grains, formulae are derived in references [4,17,28] and
are numerically tested in reference [29] for the product
densities of all intrinsic volumes, including that for the
Euler characteristic. Figure 1 shows, for instance, the pair
correlation function g0(r) for the planar Boolean model
with circular grains of radius R and intensity n = πR2λ,
where λ is the density of the underlying Poisson point
process. In contrast to g2(r) or g3(r) one finds not only a
discontinuity at r = 2R but a singularity of g0(r) because
the Euler characteristic V0(P ) does not vanish for a single
point P where two discs intersect at contact.

In addition to variances ’mixed’ moments can also be
considered, namely quantities such as 〈CX,i(A)CX,j(B)〉
for two different sets A and B. An important special case,
in particular where i = j, is A = Br = {y : y = z + r, z ∈
B} for any vector r = re, where A is a shifted copy of B.
Similar to equation (8) the mixed moment corresponding
to these sets A and B, called the covariance function, can
be expressed in a formula. For the spherical case of B =
b(o, R) it is

ki(r) = 〈CX,i(B)CX,i(Br)〉 (15)

= 2πc2
i

2R∫

r′=0

γB(r′) r′2
π∫

0

sinβ gi(s(r′, β)) dβdr′,

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
r/(2R)

0

1

2

3

4

5

6

g 0(
r)

n = 0.1
n = 2.0
n = 10.

Fig. 1. Pair correlation function g0(r) for the planar Boolean
model with circular grains of radius R and intensity n = πR2λ.
Note the non-monotonuous behaviour of g0(r) in the intensity
n which is already visible in the curvature intensity c0(n) as
function of n.

where s(r′, β) =
√

r′2 + r2 − 2rr′ cosβ. For small R such
that ρi(x) ≈ ρi(r) for r− 2R ≤ x ≤ r + 2R, equation (13)
leads to

ki(r) ≈ ρi(r)(V (B))2. (16)

In this approximation discontinuities and poles of ρi(r)
(and gi(r)) are smoothed away. Nevertheless, equa-
tion (16) yields useful estimates of ρi(r), if B and equiva-
lently R are small.

Finally, moments of the type given in equation (7) can
be considered for i 	= j. This leads to mixed product den-
sities ρij(r) etc. In [2] the example i = 3 and j = 2 is
considered; instead of ρ32(r) the symbol Fsv(r) is used. In
references [4,17] formulae are derived for such functions
for Boolean models with an application to galaxy distri-
butions given in [28].

4 Pair correlation functions for foam models

We consider two random model structures, which serve as
simple stochastic models for foams. Their volume fraction
φ is zero and they are not smooth in the sense of Section 2.
But they are easy to understand and the calculation of
their second-order characteristics is simple. These two ex-
amples serve to show that there are random structures X
where the pair correlation functions gi(r) can qualitatively
differ for different dimensions i.

The basis of both models is the Poisson plane pro-
cess [1], an infinite system of random planes in R3. The
mean surface area per volume unit of this plane system
is denoted by s. These planes generate a random network
X of lines of intersection. This network is the first ran-
dom structure studied here, called Poisson network in the
following; it could be considered as a simple model for
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Fig. 2. Network-like structures. [a] Lines of intersection of a Poisson plane process or Poisson network, [b] Voronoi network, [c]
Aluminium foam of size (17.3 mm)3 at 32 µm resolution [30].

an open-cell foam. This model could be a starting point
for the construction of physically more realistic models by
extending the lines to infinite cylinders as shown in Fig-
ure 2a.

One could construct a similar model starting from
the edges of a Voronoi tessellation as in Figure 2b, but
this model is analytically intractable. However, numeri-
cal results are studied together with a real open-cell foam
(Fig. 2c) in Section 6.

The Poisson network X can be described by the length
measure LX , where LX(B) = total length of all line pieces
in the set B. The corresponding pair correlation function
gL
1 (r) can be easily obtained by the methods described in

Chapter 9 of [1]. It is

gL
1 (r) = 1 +

2
sr

+
4

π2s2r2
. (17)

We assume that qualitatively the behaviour of gL
1 (r) is

similar to that of the pair correlation functions g2(r) and
g3(r) of the Poisson network mentioned above. Because
the network consists only of lines, its curvature measure
CX,0 is completely concentrated in those points in which
three planes intersect. Each of these points contributes –2
to CX,0. Thus g0(r) equals the pair correlation function
gP
0 (r) of the point process of plane intersection points,

which is
gP
0 (r) = 1 +

9
2sr

+
36

π2s2r2
. (18)

The corresponding intensity is c0 = −πs3/24. Figure 3
shows both pair correlation functions gL

1 (r) and gP
0 (r) for

s = 1, which display a similar behaviour.
The second random structure, called Poisson plane

model, has a different geometry. Let now X be the sys-
tem of all planes of the Poisson plane process and let on
all planes independent identically distributed planar point
fields be scattered. Their points mark holes of diameter 0
in the planes. This structure would be physically more re-
alistic if the planes are replaced by infinite plates of pos-
itive thickness with holes of positive diameter. Without
such holes we would speak about a closed-cell foam. Fig-
ure 4 shows three structures, a Poisson plane process, a
closed-cell Voronoi structure, as well as a real foam which

10
−1

10
0

10
1

10
2

r

10
0

10
1

10
2

10
3

g(
r)

g1

L
(r)

g0

P
(r)

Fig. 3. Pair correlation functions gL
1 (r) and gP

0 (r) of the net-
work model for s = 1 (see Eqs. (17, 18)).

is almost closed-cell, with holes between some cells. The
second order characteristics of the last two models are
considered in Section 6.

This plane system X with holes can be described by
the surface measure SX , where SX(B) = total area of all
plane pieces in the set B. Since the holes are points, they
do not contribute to SX . The corresponding K function
is given in [1, p. 302], which yields the pair correlation
function gS

2 (r) as

gS
2 (r) = 1 +

1
2sr

. (19)

For planes the curvature measure CX,0 is concentrated in
the plane intersection points and in the holes; they con-
tribute 1 and −1, respectively, to CX,0. Defining the den-
sity (=mean number of points per area unit) of the point
fields of holes by λh and its pair correlation function by
gh(r), one obtains;

gP
0 (r) = 1 +

(
π2s5

512
− πλhs3

16
+

sλ2
hgh(r)
2

)
1
cr

+
s4

64
1

cr2
with c = s2

(
πs2

48
− λh

)2

. (20)
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Fig. 4. Closed cell structures. [a] Poisson plane process, [b] Voronoi cell model, [c] industrial foam with some holes between
cells (subsection of size (1.68 mm)3, sample A of [31]).
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g0

P
(r)

Fig. 5. Pair correlation functions gS
2 (r) and gP

0 (r) of the plane
model (see Eqs. (19, 20)), for s = 1, λh = π

16
and a Poisson

process of holes.

The corresponding intensity is c0 = πs3/48 − sλh. For
λh = 0 the case of closed-cell foam is obtained where equa-
tion (20) reduces to equation (18). Figure 5 presents the
functions gS

2 (r) and gP
0 (r), where the parameters are s = 1

and λh = π
16 and the pair correlation function is gh(r) = 1,

corresponding to a Poisson process. Both curves have a
parabolic form, but gP

0 (r) approaches the value 1 much
faster than gS

2 (r). So one may say that the range of cor-
relation of the two-dimensional surface measure is larger
than that of the zero-dimensional Euler measure. This can
be explained by the negative values of the Euler measure
at the holes, which compensate for positive values at in-
tersection points and thus reduce the variability.

5 Statistical methods: numerical estimation
of pair correlation functions

5.1 Volume measure

In the case of the volume measure VX , the product den-
sity ρ3(r) is the classical two-point probability function

S2(r). The statistical methods for the estimation of S2(r)
are well known. Näıve estimation methods simply follow
the definition. For the case of small samples, more sophis-
ticated methods were developed, where edge correction
plays an important role, see [32]. For large samples in 3D
space, Fourier methods as described in [33,34] are useful.
This method was used here to calculate the variograms
of the experimental datasets. The two-point probability
function ρ3(r) was calculated by a straight convolution of
the volume characteristic function in Fourier space using
padding to prevent wrap-around errors (i.e. [35]).

5.2 Surface measure

The estimation of the product density ρ2(r) of the surface
measure SX is more complicated than that of ρ3(r). The
difficulty results from the fact that ρ2(r) has the char-
acter of a density function which is related to a random
surface. If the data are given as voxel data (as assumed in
the present paper) then the surface is given only in some
approximation and the determination of ρ2(r) for small r
is difficult. For small r, the product density ρ2(r) has a
delicate behaviour since it has a pole of order −1 at r = 0.

The methods described in [36] and [2, p. 285], are
useful for simulated data which include all details in Eu-
clidean space, but not for voxelized data. There are several
methods which yield approximations of ρ2(r) for voxelized
data. One is the geostatistical method described in a gen-
eral context in the following section.

5.3 Variograms of curvature measures

A fruitful statistical idea consists in assigning a random
field to a random measure and then to analyse the random
field. In the given case, for i = 0, 1, 2 and 3 the random
field Zi(x) is defined as in the local porosity approach by

Zi(x) = Ci(b(x, R)) for x ∈ R
3. (21)
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Fig. 6. Normalized variograms for radii R = 5 and R = 10 of [a] the network model (see Fig. 2a) for length (L) and Euler
number (P) (corresponding pair correlation function shown in Fig. 3) and [b] the plane model (see Fig. 4a) for surface (S) and
Euler number (P) (corresponding pair correlation function shown in Fig. 5).

Here the sphere radius R is considered as a parameter,
which has of course influence on the behaviour of the ran-
dom field. Mean mi, variance σ2

i and one-dimensional dis-
tribution of the random field are location independent be-
cause of the homogeneity assumption. One finds

mi = ci · 4
3
πR3, (22)

while σ2
i is given by equation (8). Of course, one can

use other observation windows than a sphere b(x, R).
While Hilfer [3] and Torquato [2] consider only the one-
dimensional distribution of the random field, we study
here also its spatial correlations. Appropriate methods
have been developed in geostatistics (see e.g. [22]).

The usual geostatistical characteristic in such analyses
is the variogram γ(r), here for Zi(x) denoted by γi(r),

γi(r) =
1
2
〈(Zi(o) − Zi(r))2〉, (23)

where r is any point in R3 of distance r from o. The var-
iogram can also be expressed in terms of the covariance
function (see Eq. (15)) as

γi(r) = σ2
i − ki(r) + m2

i . (24)

Thus statistical analyses which yield variograms γi(r) also
lead to ki(r) and by applying the approximation (16) to
smoothed versions of ρi(r) and gi(r). The range of corre-
lation can be found also by means of the variogram. Here
the convergence towards σ2

i is the criterion.
Of course, the parameter R plays an important role.

For a small radius R one can expect that equation (16)
works well. However if R is large, ki(r) gives only little in-
formation about the structure X and is mainly determined
by the set covariance γB(r) (see Eq. (8)). For B = b(o, R)
and large R, γi(r) takes the form of the so-called spherical
variogram (see Eq. (14)), where

γi(r) ∝ 3
2

r

2R
− 1

2

( r

2R

)3

. (25)

Applying equations (15) and (24) one may transform pair
correlation functions gi(r) into variograms γi(r). Figure 6
shows variograms for the Poisson network and plane model
for two radii R. Clear differences in the ranges of corre-
lation for different characteristics of the same geometrical
structures are visible. Note, that γi(r → ∞) → σ2

i (see
Eq. (8)).

6 Applications on foams and porous media

6.1 Poisson-Voronoi foams

To illustrate further the method introduced in the previ-
ous section two foams are considered here which are re-
lated to the 3D Voronoi tessellation of point distribution
of a Poisson point process. One of the foams is an open-cell
foam and obtained from the cell edges of the tessellation
by enlarging them to cylinders of diameter d. Figure 2b
shows a simulated sample with intensity of the underly-
ing Poisson process τ = 100 mm−3 and d = 12.5 µm. The
other is a closed-cell foam and obtained by enlarging the
cell faces to plates of thickness t. Figure 4b shows a simu-
lated sample with the same τ and t = 5 µm. The mean cell
volume of the underlying tessellation is 0.01mm3 and the
mean side length is 93 µm. We simulated both models in
a cube of side length 1 mm and then determined the var-
iograms numerically by approximating the cell structure
by a voxel set. The results are shown in Figures 7 and 8.

For the network model or open-cell foam the vari-
ograms for volume and surface coincide and show a range
of correlation of approx. 0.15mm, while the range of cor-
relation for the Euler characteristic is much shorter, about
0.05mm. For all four intrinsic volumes the variograms do
not show pronounced oscillations, indicating the high de-
gree of irregularity which is inherited from the Poisson
process of cell centres to the system of edges of the tessel-
lation.
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Fig. 7. Normalized variograms γi(r) of the intrinsic volumes and curvature measures CX,i(B) of the Voronoi network model
(Fig. 2b) for R = 5 and R = 10 voxels. [a] Euler characteristic, [b] integral mean curvature, [c] surface area, [d] volume.

[d]

Fig. 8. Normalized variograms γi(r) of the intrinsic volumes and curvature measures CX,i(B) of the Voronoi cell model (Fig. 4b)
for R = 5 and R = 10 voxels. [a] Euler characteristic, [b] integral mean curvature, [c] surface area, [d] volume.

For the Voronoi cell model or closed-cell foam again
the variograms for volume and surface are similar, but now
they indicate some local regularity as there are oscillations
with a maximum at 0.05mm and a minimum at 0.15mm.
The range of correlation is here about 0.2mm, a bit longer
than for the network model. The stronger spatial correla-
tion shows that the irregularity of the Poisson-Voronoi
tessellation is different if faces and if edges are considered.
Again the variogram for the Euler characteristic is quite
different, indicating only slight spatial correlation (and a

high degree of variability); the range of correlation seems
to be less than 0.05mm.

6.2 Industrial foams

Let us now consider physical foam samples. Both indus-
trial foam images analysed in this section were acquired
on the ANU micro-CT facility. The open-cell foam of Fig-
ure 2c shows the full size (5403 voxel or 17.3mm3) of a
subset of a 10243 image acquired at 32 µm resolution (see
also [30]). The closed-cell foam of Figure 4c represents a
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Fig. 9. Variograms γi(r) of the intrinsic volumes (curvature measures) CX,i(B) of the Aluminium foam (Fig. 2c) for R = 5 and
R + 10 voxels. [a] Euler characteristic χV , [b] integral mean curvature MV , [c] surface area SV , [d] volume VV .

Fig. 10. Variograms γi(r) of the intrinsic volumes (curvature measures) CX,i(B) of the industrial foam (Fig. 4c) for R = 5 and
R = 10 voxels. [a] Euler characteristic χV , [b] integral mean curvature MV , [c] surface area SV , [d] volume VV .

subset of the 456× 456× 912 (about 58mm3) central sec-
tion of a 10243 image at 6.7 µm resolution analysed here,
and has previously been studied in [31,37].

For details of the reconstruction and segmentation pro-
cess see [30,38]. This study analyses the resulting binary
phase images. Figures 9 and 10 show the variograms ob-
tained for the open- and closed-cell foams respectively.

For the open-cell foam of Figure 2c the variograms for
volume and surface nearly coincide, they show a range

of correlation of 1mm. In contrast, the ranges of correla-
tion for the integral of mean curvature and for the Euler
characteristic are clearly shorter, about 0.25mm. All four
variograms indicate only little regularity, as they all do
not have any oscillations with pronounced maxima and
minima.

This is different to the closed-cell foam of Figure 4c.
There for volume and surface area oscillations are clearly
visible, indicating local regularity in size and arrangement
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Fig. 11. Fontainebleau sandstone. [a] Pore-grain interface of a (1.4 mm)3 subsection of a Fontainebleau sandstone with 13%
porosity. [b] Two-point volume to volume correlation function of the pore space.

of the cells, which is obviously more pronounced than for
the sandstone discussed in the following section. In con-
trast, the integral of mean curvature and the Euler charac-
teristic are more irregularly distributed. These differences
are also clearly expressed by the different ranges of correla-
tion, which are 0.05mm for Euler and 0.6mm for volume.

6.3 Fontainebleau sandstone

The homogeneity of Fontainebleau sandstone in compo-
sition, grain size, and porosity makes it an ideal system
for comparative studies. Other statistical-morphological
studies of such material were published in [3,20,21,39–42].
In [39] permeability was calculated on five sub-volumes of
different sizes (between 0.085 mm3 and 0.59 mm3) at a
resolution of 10 µm and a relatively large variability re-
sulted. In [40] reasonable averaging of permeabilities was
found for eight sub-volumes of 0.59 mm3 at a resolution of
7.5 µm. In [42] a 33.6 mm3 volume of Fontainebleau sand-
stone at 6.3 µm resolution was analysed by sub-sampling
and evaluating local porosity, percolation, and conductiv-
ity distributions to test a reconstruction technique based
on inscribed spheres. It was found that porosity does cor-
relate poorly to conductivity.

We consider a sample of Fontainebleau sandstone,
which was already analysed in [43–47]. These previous
studies found the scatter in permeability over porosity to
be larger than for effective elastic moduli, effective con-
ductivity, or the morphological measures. This suggests
that representative volumes (if they exist) exhibit differ-
ent sizes for different physical properties, a notion impor-
tant in up-scaling. The reconstructed image has a resolu-
tion of 5.68µm and was thresholded using a kriging-based
thresholding method [48] to give a binary solid-pore im-
age [49,43]. A 4803 cubic subset was extracted for anal-
ysis, corresponding to a volume of 20.5mm3. A picture
of a 2403 subsection of this sample is given in Figure 11a.
Figure 11b shows the empirical two-point probability func-
tion S2(r) for the sample. The solid volume fraction of the
sample is VV = 0.871, specific surface SV = 15.5 mm−1,

specific mean curvature MV = −235 mm−2, and specific
Euler characteristic χV = −175 mm−3. For SV , the dig-
ital analysis gives SV = 15.5 mm−1. However, the grains
are not aligned with the lattice directions and it is gen-
erally recognised that the surface area of a sphere in the
continuum is a a factor of 2/3 smaller (e.g. [50]). Thus
the real value is closer to SV = 10.3 mm−1. The negative
value of χV is typical for bicontinuous porous media with
few isolated components. Visual inspection by comparing
Figures 4b and 11a shows that perhaps a plane model is
more similar to the sandstone structure than an open-cell
foam.

6.3.1 Structural analysis

It was calculated from the whole data set of 4803 voxels by
convolution in Fourier space. As it has to be, for r = 0 the
value VV appears and for large r the value V 2

V = 0.0166.
There is a local minimum at r = 0.15 mm and a local
maximum at r = 0.25 mm. Though these extrema are
not very pronounced, their presence shows clearly that a
Boolean model with convex grains cannot be a realistic
model for the sample, since S2(r) for such a model is al-
ways monotonously decreasing. We see that the range of
correlation of the volume measure is around 0.3 mm.

Figure 12 shows the probability density functions of
the random curvature measure values Ci(b(x, R)) for i =
0, 1, 2 and 3 in the style of the local porosity approach
for various radii R. For i = 3 the values C3(b(x, R)) = 0
and C3(b(x, R)) = V (b(x, R)) are possible, which explains
the particular shape of the curve. For i = 0, 1 and 2 the
measures are surface concentrated and zero, if no surface
is contained in the measurement sphere. Above R ≈ 13
(R ≈ 75 µm) a threshold is reached, for which the obser-
vation window never fits into the pore space. The analogue
is true for the grain phase above R ≈ 35 (R ≈ 200 µm).
These thresholds were derived exactly by finding the max-
imal inscribed sphere size for each phase. For a grain pack
with uncorrelated grains one would expect that at this
length the correlations vanish, which is in agreement with
Figure 11b, considering that the grains are actually not
spherical.
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Fig. 12. Probability density functions for the normalized curvature measures Ci(b(o,R))/V (b(o, R)) of Fontainebleau sandstone
based on different observation window sizes (balls of radius R in voxel units). For small radii the observation window can lie
fully in one phase. For SV , MV , and χV this leads to a sharp peak at 0 for small radii.

Figure 13 shows the variances of the normalized cur-
vature measures Ci(b(o, R)) given in Figure 12 for dif-
ferent radii. Clearly with increasing radius R the vari-
ance of the curvature intensities decreases. Further, for
large radii the measures scale linearly over the inverse of
the measurement support volume V (b(o, R)). The scal-
ing transition indicates the radius R of the measurement
sphere, at which correlations vanish. For χV and MV this
is R ≈ 40 µm and for SV and VV it is R ≈ 0.1 mm.

In the geostatistical approach three spherical windows
were used, with radii R = 5,10 and 25 voxels. Figure 14
shows the normalized variograms γi(r) for i = 0, 1, 2, 3 and
R = 5, 10 and 25 voxels (or R = 28.4, 56.8 and 142 µm).
As expected, the curves become smoother with increasing
R. While for R = 25 all structure information is smoothed
away, for R = 10 maxima and minima are still visible. As
expected due to equation (16), they are at the same places
as those of S2(r); since covariance function and variogram
are connected by equation (24), there is a maximum of
γ3(r) where S2(r) has a minimum and vice versa. Thus
it is clear that γ3(r) yields nearly the same structural in-
formation as S2(r) for window radii R not too large. Also
γ3(r) says that the range of correlation for the volume
measure is about 0.3 mm.

The spatial correlations for the surface measure as
shown by γ2 seem to be nearly the same as for the vol-
ume measure. In contrast, the variograms for CX,0 and
CX,1 show a different form. The range of spatial correla-
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Fig. 13. Scaling of the normalized variances of the curva-
ture measures of Fontainebleau over measuring support vol-
ume. The straight lines indicate fits running towards (0, 0) of
the coordinate system. For large radii R the variances scale
linearly, indicating the measuring window size at which corre-
lations disappear.

tion as expressed by the variograms seems to be clearly
shorter than that for CX,2 and CX,3. Thus the similar-
ity of the pore surface system of the sandstone with the
plane model is also expressed in the correlation functions.
We can conclude that the variability of volume and sur-
face are higher than that of mean curvature and Euler
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[c]

Fig. 14. Variograms γi(r) of the intrinsic volumes and curvature measures CX,i(B) of Fontainebleau sandstone for R = 5, 10
and 25 voxels. [a] Euler characteristic χV , [b] integral mean curvature MV , [c] surface area, SV , [d] volume VV .

characteristics. Consequently, when estimating MV and
NV smaller windows are sufficient, while large windows
are required for VV and SV .

7 Conclusions

A systematic second-order theory for all four intrinsic vol-
umes of random geometric structures has been presented.
Such a theory is necessary since different macroscopic
physical properties of materials are correlated to different
properties of their microgeometry. These are in close rela-
tion to different intrinsic volumes [18,19]. In the present
paper it has been demonstrated how one series of these
characteristics, the variograms, can be statistically deter-
mined using voxel data. The authors believe that PCFs
gi(r) can be estimated for such data (except at small r
due to numerical problems). In general variograms give a
good description of geometrical variability.

In all examples considered the variograms showed some
qualitative differences for the different intrinsic volumes.
In particular, variograms corresponding to the Euler char-
acteristic The main difference observed was in the range of
correlation; this was clearly shorter for the Euler charac-
teristic. This behaviour is different to the case of a Boolean
model, where all intrinsic volumes have the same range of
correlation.

C.H.A. acknowledges the Australian Government for their sup-
port through the ARC grant scheme (grant DP0558185). We
thank Mark A. Knackstedt and Tim J. Senden for providing
the industrial foam data sets and the former for a critical read-
ing of the manuscript.

References

1. D. Stoyan, W.S. Kendall, J. Mecke, Stochastic Geometry
and its Applications (John Wiley & Sons, Chichester,
1995)

2. S. Torquato, Random Heterogeneous Materials:
Microstructure and Macroscopic Properties (Springer-
Verlag, New York, 2002)

3. R. Hilfer, Statistical Physics and Spatial Statistics - The
Art of Analyzing and Modeling Spatial Structures and
Pattern Formation, edited by K.R. Mecke, D. Stoyan, 554
Lect. Notes Phys. (Springer, Berlin, 2000) pp. 203–241

4. K.R. Mecke, Integralgeometrie in der Statistischen Physik:
Perkolation, komplexe Flüssigkeiten und die Struktur des
Universums (Harry Deutsch, Frankfurt, 1994)

5. K. Mecke, Acta Physica Polonica B, 28, 1747 (1997)
6. K.R. Mecke, Int. J. Mod. Phys. B 12, 861 (1998)
7. K.R. Mecke, Statistical Physics and Spatial Statistics -

The Art of Analyzing and Modeling Spatial Structures and
Pattern Formation, edited by K.R. Mecke, D. Stoyan, 554
Lect. Notes Phys. (Springer, Berlin, 2000) pp. 111–184

8. M. von Laue, Münchener Berichte (1912) p. 303
9. Lord Rayleigh, Proc. Roy. Soc. London Ser. A 84, 25

(1911)
10. A. Guinier, Ann. Phys. 12, 161 (1939)
11. P. Debye, H.R. Anderson, H. Brumberger, J. Appl. Phys.

28, 679 (1957)
12. G. Porod, Kolloid-Zeitschrift 125, 51; 108 (1952)
13. R. Kirste, G. Porod, Kolloid-Zeitschrift 184(1), 1 (1962)
14. J.P. Hansen, I.R. McDonald, Theory of Simple Liquids

(Academic Press, 1976)
15. U. Sonntag, D. Stoyan, H. Hermann, Phys. Stat. Sol. 68,

281 (1981)
16. P. Smith, S. Torquato, J. Comp. Phys. 76(1), 176 (1988)
17. K.R. Mecke, J. Stat. Phys. 102, 1343, (2001)



C.H. Arns et al.: Second-order analysis by variograms for curvature measures of two-phase structures 409

18. C.H. Arns, M.A. Knackstedt, K.R. Mecke, Phys. Rev.
Lett. 91, 215506 (2003)

19. P.-M. König, R. Roth, K. Mecke, Phys. Rev. Lett. 93, 1–4
(2004)

20. C.L.Y. Yeong, S. Torquato, Phys. Rev. E 57, 495 (1998)
21. C.L.Y. Yeong, S. Torquato, Phys. Rev. E 58, 224 (1998)
22. J.P. Chilès, P. Delfiner, Geostatistics. Modelling Spatial

Uncertainity (J. Wiley and Sons, New York, 1999)
23. R. Schneider, Convex Bodies: The Brunn-Minkowski

Theory, Encyclopedia of Mathematics and its Applications,
Vol. 44 (Cambridge University Press, Cambridge, 1993)

24. D.A. Klain, G.-C. Rota, Introduction to Geometric
Probability (Cambridge University Press, Cambridge,
1997)

25. A. Tscheschel, D. Stoyan, J. Microsc. 211, 80 (2003)
26. A. Bezrukov, M. Bargiel, D. Stoyan, Part. Part. Charact.

19, 111 (2002)
27. S. Torquato, G. Stell, J. Chem. Phys. 79, 1505 (1983)
28. M. Kerscher, K. Mecke, J. Schmalzing, C. Beisbart,

T. Buchert, H. Wagner, Astron. Astrophys. 373, 1 (2001)
29. U. Brodatzki, K. Mecke, Computer Physics

Communications 147, 218 (2002)
30. Arthur Sakellariou, T.J. Sawkins, T.J. Senden, A. Limaye,

Physica A 339(1-2), 152 (2004)
31. M. Saadatfar, M.A. Knackstedt, C H. Arns, A. Sakellariou,

T. Senden, A.P. Sheppard, R.M. Sok, H. Steininger,
W. Schrof, Physica A 339(1-2), 131, (2004)

32. T. Mattfeldt, D. Stoyan, J. Microsc. 200(2), 158 (2000)
33. D. Marcotte, Computers & Geosciences 22(10), 1175

(1996)
34. K. Koch, J. Ohser, K. Schladitz, Adv. Appl. Prob. 35, 603

(2003)
35. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P.

Flannery, Numerical Recipes in Fortran 90 - The Art
of Parallel Scientific Computing, Vol. II (Cambridge
University Press, Cambridge, 1996)

36. N.A. Seaton, E.D. Glandt, J. Chem. Phys. 85(9), 5262
(1986)

37. M. Knackstedt, C. Arns, M. Saadatfar, T. Senden, A.
Sakellariou, A. Sheppard, R. Sok, W. Schrof, H. Steininger,
Adv. Eng. Mat. 7(4), 238 (2005)

38. A.P. Sheppard, R.M. Sok, H. Averdunk, Physica A 339(1-
2), 145 (2004)

39. P. Spanne, J.F. Thovert, C.J. Jacquin, W.B. Lindquist,
K.W. Jones, P.M. Adler, Phys. Rev. Lett. 73, 2001 (1994)

40. F.M. Auzerais, J. Dunsmuir, B.B. Ferrèol, N. Martys,
J. Olson, T.S. Ramakrishnan, D.H. Rothman, L.M.
Schwartz, Geophys. Res. Lett. 23(7), 705 (1996)

41. J.T. Fredrich, Phys. Chem. Earth (A) 24(7), 551 (1999)
42. J.-F. Thovert, F. Yousefian, P. Spanne, C.G. Jacquin, P.M.

Adler, Phys. Rev. E 63, 61307 (2001)
43. W.B. Lindquist, A. Venkatarangan, J. Dunsmuir, T.F.

Wong, J. Geophys. Res. B 105, 21509 (2000)
44. C.H. Arns, M.A. Knackstedt, W. Val Pinczewski, W.B.

Lindquist, Geophys. Res. Lett. 28(17), 3361 (2001)
45. C.H. Arns, M.A. Knackstedt, K.R. Mecke, Morphology of

Condensed Matter — Physics and Geometry of spatially
complex Systems, edited by K.R. Mecke, D. Stoyan, Lect.
Notes Phys. 600 (Springer, Berlin, 2002) pp. 37–74

46. C.H. Arns, M.A. Knackstedt, W.V. Pinczewski, E.G.
Garboczi, Geophys. 67(5), 1396 (2002)

47. C.H. Arns, M.A. Knackstedt, W.V. Pinczewski, N. Martys,
J. Petr. Sc. Eng. 45(1-2), 41 (2004)

48. W. Oh, W. Brent Lindquist, IEEE T. Patt. Anal. Machine
Intelligence 21, 590 (1999)

49. W.B. Lindquist, A. Venkatarangan, Phys. Chem. Earth
(A) 25, 593 (1999)

50. D.J. Bergman, K.-J. Dunn, L.M. Schwartz, P.P. Mitra,
Phys. Rev. E 51, 3393 (1995)


